Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 150(18): 184308, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091918

RESUMO

We present molecular-frame measurements of the recombination dipole matrix element (RDME) in CO2, N2O, and carbonyl sulfide (OCS) molecules using high-harmonic spectroscopy. Both the amplitudes and phases of the RDMEs exhibit clear imprints of a two-center interference minimum, which moves in energy with the molecular alignment angle relative to the laser polarization. We find that whereas the angle dependence of this minimum is consistent with the molecular geometry in CO2 and N2O, it behaves very differently in OCS; in particular, the phase shift which accompanies the two-center minimum changes sign for different alignment angles. Our results suggest that two interfering structural features contribute to the OCS RDME, namely, (i) the geometrical two-center minimum and (ii) a Cooper-like, electronic-structure minimum associated with the sulfur end of the molecule. We compare our results to ab initio calculations using time-dependent density functional theory and present an empirical model that captures both the two-center and the Cooper-like interferences. We also show that the yield from unaligned samples of two-center molecules is, in general, reduced at high photon energies compared to aligned samples, due to the destructive interference between molecules with different alignments.

2.
Phys Rev Lett ; 117(20): 203001, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886492

RESUMO

We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

3.
Phys Rev Lett ; 112(15): 153001, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785035

RESUMO

High harmonic generation (HHG) is used to measure the spectral phase of the recombination dipole matrix element (RDM) in argon over a broad frequency range that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well with predictions based on the scattering phases and amplitudes of the interfering s- and d-channel contributions to the complementary photoionization process. The reconstructed attosecond bursts that underlie the HHG process show that the derivative of the RDM spectral phase, the group delay, does not have a straightforward interpretation as an emission time, in contrast to the usual attochirp group delay. Instead, the rapid RDM phase variation caused by the CM reshapes the attosecond bursts.

4.
Opt Lett ; 35(12): 2028-30, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20548375

RESUMO

We create a transient Bragg grating in a high-harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.

5.
Phys Rev Lett ; 102(8): 083002, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19257735

RESUMO

We report experimental measurements of high-order harmonic spectra generated in Ar using a carrier-envelope-offset (CEO) stabilized 12 fs, 800 nm laser field and a fraction (less than 10%) of its second harmonic. Additional spectral peaks are observed between the harmonic peaks, which are due to interferences between multiple pulses in the train. The position of these peaks varies with the CEO and their number is directly related to the number of pulses in the train. An analytical model, as well as numerical simulations, support our interpretation.

6.
Phys Rev Lett ; 97(1): 013001, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16907370

RESUMO

We investigate the spectral and temporal structure of high harmonic emission from argon exposed to an infrared laser field and its second harmonic. For a wide range of generating conditions, trains of attosecond pulses with only one pulse per infrared cycle are generated. The synchronization necessary for producing such trains ensures that they have a stable pulse-to-pulse carrier envelope phase, unlike trains generated from one color fields, which have two pulses per cycle and a pi phase shift between consecutive pulses. Our experiment extends the generation of phase stabilized few cycle pulses to the extreme ultraviolet regime.

7.
Phys Rev Lett ; 95(1): 013001, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16090610

RESUMO

We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (approximately 20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes.

8.
Phys Rev Lett ; 88(19): 193901, 2002 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12005632

RESUMO

We present energy-resolved cross-correlation measurements of an extreme ultraviolet (XUV) pulse, generated as the fifth harmonic (15.5 eV) of an intense 80 fs laser pulse centered at 400 nm. Spectrally resolving the cross-correlation signal allows us to characterize the time-dependent frequency of the XUV pulse. We find that the fifth harmonic has a small negative chirp in excess of that predicted by perturbation theory. In addition, by manipulating the chirp of the driving laser we can induce and measure a positive or a negative chirp on the XUV pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...